Emerging tools for RNA structure analysis in polymorphic data

Jan Gorodkin

Center for non-coding RNA in Technology and Health (<u>http://rth.dk</u>) University of Copenhagen

Content:

- Movitation
- Mutations in RNA structure
- Disease applications
- Perspectives

Single Nucleotide Polymorphisms (SNPs): Where are they?

- SNPs can direct phenotypes and diseases
- non-synonymous (ns) SNPs can alter a protein structure
- SNPs can induce/destroy microRNA target
- Probably far most disease studies aim at identifying nsSNPs

SNPs: Where are they?

Disease and trait associated SNPs[†]: 88% intronic or intergenic.

[†] (Hindorff et al., PNAS, 2009; MacArthur et al., Nucl Acids Res, 2013)

SNPs: Where are they?

SNPs are outside coding regions

2,619 disease and trait associated SNPs of cancer GWAS loci[†]:

Classification	Approx percentages	Approx numbers
Intronic	40	1,047
Intergenic	32	838
Within non-coding seq of a gene	10	262
Upstream	8	210
Downstream	4	105
Non-synonymous coding	3	79
3' untranslated region	~1	26
Synonymous coding	~1	26
Unknown	~1	26

[†] (Freedman *et al.*, Nat. Genet., 2011)

The genome is potentially full of RNA structure

Recent independent studies indicates > 10% of the genome is structured.

- In silico study of mammalian genome : \sim 13% †
- ~15% of all transcribed Single Nucleotides Variants (SNVs) locally alter the RNA structure in human*
- > 10,000 transcripts structured in A. Thaliana[‡]

The current analyses point in the direction that a non-neglible amount of the transcriptome make up structured RNA.

[†] (Smith *et al.*, Nucl Acids Res, 2013); *(Wan *et al.*, Nature, 2014); [‡] (Ding *et al.*, Nature, 2014)

Computational folding of RNA sequences

Contributions from structural components Folding is an optimization problem

(From Zwieb, Meth Mol Biol, 2014)

Exploit the *ensemble* of all structures Computing a dot-plot

(From Hofacker, Meth Mol Biol, 2014)

Effect of mutations in RNA sequences

Global structural change: SNP could change the base-pair probabilities of the global RNA structure.

Example: SNP C14G in 5'UTR of the FTL gene (in an IRE hairpin)

Structural changes in IRE - aberrant FTL (ferritin, light polypeptide) gene regulation - hereditary hyperferritinemia-cataract syndrome

Effect of mutations in RNA sequences

Global versus local

Small local structural change in functional motifs can have striking effect on the RNA functions^{\dagger}.

⁽Westerhout et al., 2005; Abbink et al., 2008; Hemert et al., 2008; Grover et al., 2011)

Motivation

- Impact of SNPs in non-coding RNA structure and function.
- Existing methods detect global changes
 - RNAmute^{a,b}
 - RDMAS^c
 - RNAmutants^{d,e}
 - SNPfold^f
- Overcome limitations by searching for *local structural changes*.
- remuRNA^g: Entropy based measure. Local version by average windows sorrounding the SNP.

^a(Barash, Nucl Acids Res, 2003); ^b(Churkin and Barash, BMC Bioinform, 2006); ^c(Shu et al., BMC Bioinform, 2006); ^d(Waldispuhl et al., PLoS Comput Biol 2008); ^e(Waldispuhl et al., Nucleic Acids Res 2009); ^f(Halvorsen et al., PLoS Genet, 2010); ^g(Salari et al., Nucl Acids Res, 2012)

Pipeline concept

RNAsnp[†] detection of locally changed structure.

[†]Sabarinathan, Tafer, Seemann, Hofacker, Stadler, Gorodkin. Hum Mutat, 2013

RNAsnp pipeline

- Mode 1 based on global folding method (RNAfold)
- Mode 2 based on local folding method (RNAplfold)
- Mode 3 combination of mode 1 and 2.

The SNP effects are quantified in terms of empirical *P*-value P-values: Empirically (~156 CPU years)

Predicting structural effects of disease associated SNPs

Overlap of 20 candidates by d_{max} and r_{min} of which SNPfold overlap 3 (grey).

		HGMD		Genbank			<i>p</i> -va	lue
Disease/phenotype	Gene	Accession	UTR	Accession	NTs	SNP	$p(d_{max})$	$p(r_{min})$
Pseudohypoaldosteronism	NR3C2	CR030126	5	NM_000901	5898	C362G	0.017	0.022
Hypertension	EDN2	CR994679	3	NM_001956	1243	G999A	0.036	0.021
Obesity	CNR1	CR073542	3	NM_033181	5373	A3777G	0.032	0.036
Myocardial infarction	GP1BA	CR022116	5	NM_000173	2463	U71C	0.040	0.037
Colorectal cancer	INSR	CR082021	3	NM_001079817	9023	A4326G	0.042	0.030
Graves'disease	FCRL3	CR067134	5	NM_052939	3019	G282C	0.011	0.042
Increased triglyceride levels	ABCA1	CR025352	5	NM_005502	10502	C126G	0.044	0.022
Insulinresis.hypertension	RETN	CR032443	3	NM_020415	478	G435A	0.045	0.043
Cartilage-Hairhypoplasia	RMRP	CR063417	ncRNA	NR_003051	268	A215G	0.048	0.027
Hypercholesterolaemia	LDLR	CR971948	5	NM_000527	5283	C174A	0.025	0.048
Glaucoma	CYP1B1	CR032431	5	NM_000104	5153	C118U	0.063	0.036
Reduced transcriptional activity	NR3C1	CR016150	5	NM_001024094	6787	C274A	0.044	0.063
HDL cholesterol levels	LIPG	CR032437	3	NM_006033	4141	A2237G	0.051	0.065
FactorVIIdeficiency	F7	CR090334	5	NM_019616	3059	U8C	0.066	0.042
HaemophiliaA	F8	CR070421	5	NM_000132	9035	G60A	0.074	0.010
Cartilage-Hairhypoplasia	RMRP	CR064472	ncRNA	NR_003051	268	U10C	0.076	0.024
VonHippel-Lindau syndrome	VHL	CR011856	3	NM_000551	4560	C862G	0.076	0.065
Obesity	SLC6A14	CR035766	3	NM_007231	4564	C2238G	0.078	0.062
Spasticparaplegia31	REEP1	CR082030	3	NM_022912	3853	C764U	0.033	0.081
Hyperferritinaemia-cataract syndrome	FTL	CR061334	5	NM_000146	871	U22G	0.052	0.097

RNAsnp web server

RNAsnp Web server input¹ (http://rth.dk/resources/rnasnp)

RTH ENTER FOR INDECODING RATA IN TECHNOLOGY AND IMALTO		
NOWE RESEARCH RESOURCES PURUCHTONS ABOUT PEOPLE RNASNP Web Server: Predicting SNP effects on loc Please III out the submission form and click the Submit button, input fields I conf Example Data)	EVENTS NEWS 2085 COMMCT	Submit Results Template Example
Input sequence*		Help
уді (Вейздей) не (ТІМ 00046,3) Мено зарілел богті така Самттораєвотся соссоботтот стат стакавото такая стотса самство соссоботтот стакавото такая стотса самста стоска соссобати стото стакавото соссобот самторає соссобати стакавото само само само стакавото то стоска само стости става само само само стакавото стот соссобати такаво само само само само стакавото стот соссобати такаво само само само само стакавото соссобати стоти собо само само само само стакавото соссобати стакавото само само само само само стакавото состо само стака стававана само само само само само само само сам	In: Light polypeptide (FTL), mMA Light polypeptide (FTL), mMA GACACHACTRACEACCATCT GACACHACTRACEACCATC TICANTOTACCTCAGGCC TICANTOTACCTCAGGCCATC TACATCCAGGCCATC TACATCCCAGGCCATC TACATCCCCAGGCCATC TACATCCCCTAGGCCATC	
SNP details*	Mode	
Enteryour SNP details in the required format [2] • Xpost X is the wild-type nt. Y is the mutant and pos is the position of nt. (pos-1 for first nucleotide in a sequence) • In case of multiple SNPs, seperate each SNP with the delimiter *-*	Select the mode of operation [7] Select the mode of operation [7] Mode 1 - based on global folding (RNAfold) Mode 2 - based on local folding (RNApflold) Mode 3 - basenen putative structure discussive SNP	
T226 T226-617C	Folding window	
(an) University PAID Res	Select the size of flanking regions on either side of SNP 200 ‡	
(or) Optional Shep the: Browse	Additional options	

¹ (Sabarinathan *et al.*, Nucl Acids Res, (Web Server Issue), 2013)

RNAsnp web server

RNAsnp Web server output¹

(Sabarinathan et al., Nucl Acids Res, (Web Server Issue), 2013)

1

RNA structure in protein coding genes

Analysis SNPs in UTRs expressed in lung cancer

Non-small cell lung cancer (NSCLC) is the most common form of lung cancer (activating mutations in *KRAS* oncogene).

(http://lungcancer.ucla.edu/adm_lung_cancer_nonsm.html)

- → Transcriptome-wide sequencing of lung (adenocarcinoma) tumors. *KRAS*)
- → SNVs effects predicted for coding regions (and splice sites).
- $\rightarrow\,$ About 40% of the total SNVs (73,717) maps to UTRs.

[†]Kalari KR, et al., Front. Oncol., 2012.

Analysis SNPs in UTRs expressed in lung cancer

Combine[‡]

- RNAsnp
- miRNA target prediction
 - TargetScan
 - miRanda

[‡]Sabarinathan, Wenzel, Novotny, Tang, Kalari, Gorodkin. PLoS One, 2014.

Results

 \rightarrow Data set contains 29,290 SNVs (in 6462 genes)

ightarrow Of these, 6519 SNVs are in 1347 cancer-related genes[‡]

Cancer-related genes:

- ightarrow 20.8% to begin with.
- \rightarrow 23.4% after pipeline (*P*=0.032)

Some details:

	Effect of SNVs on			
gene type	Sec. Str. (#SNVs)	miRNA TS (#SNVs)	both (#SNVs)	
All	472 (in 408 genes)	490 (in 447 genes)	48	
Cancer-related	111 (in 98 genes)	124 (in 104 genes)	15	

[‡] obtained from COSMIC & Qiagen data bases

Analysis SNPs in UTRs expressed in lung cancer Effect of SNVs on RNA secondary structure of *GPX3* mRNA

SNV U1552G predicted to cause significant local secondary structure changes (d_{max} p-value: 0.0474 in 3' UTR of GPX3 mRNA. This local change disrupt the structure of SECIS (blue circle).

Outlook

- RNAsnp tool for analyzing RNA structure disrupting SNPs.
- Taking 3D structure into account.

Webservers, software, data resources: http://rth.dk/resources.

Acknowledgements

Uni CPH / RTH:

- Sabarinathan Radhakrishnan (Alumni)
- Stefan E. Seemann
- Jakob H. Havgaard
- Christian Anthon
- Anne Wenzel
- Peter Novotny
- Ferhat Alkan
- Nikolai Hecker
- Xiaoyong Pan
- Rebecca Kirsch
- Corinna Theis
- Victor Carmelo
- Alexander Junge
- Daniel Sundfeld
- Shiqi Zhang

External collaborators:

- Walter L. Ruzzo, Washington University, Seattle
- Peter Stadler, University of Leipzig
- Hakim Tafer, University of Leipzig
- Steve Hoffmann, University of Leipzig
- Rolf Backofen, University of Freibrug
- Ivo Hofacker, University of Vienna
- Krishna R. Kalari, Mayo Clinic
- Xiaojia Tang, Mayo Clinic

Funding:

- Danish Strategic Research Council
- Innovation Fund Denmark
- Danish Center for Scientific Computing
- The Lundbeck Foundation

Methods in Molecular Biology 1097

Springer Protocols

Jan Gorodkin Walter L. Ruzzo *Editors*

RNA Sequence, Structure, and Function: Computational and Bioinformatic Methods

🎇 Humana Press

http://rth.dk/rnabook

Upcoming Elixir position in RNA tools infrastructure (gorodkin@rth.dk)